Copied to
clipboard

G = C42.23C23order 128 = 27

23rd non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.23C23, C4oD4:2Q8, D4.7(C2xQ8), Q8.7(C2xQ8), C4:C4.344D4, D4:2Q8:4C2, Q8:Q8:4C2, D4.Q8:16C2, Q8.Q8:16C2, C4:C8.47C22, C4:C4.47C23, (C2xC8).31C23, C4.35(C22xQ8), (C2xC4).282C24, C22:C4.145D4, (C4xD4).71C22, C23.451(C2xD4), C4:Q8.104C22, C4.20(C22:Q8), (C4xQ8).68C22, C2.D8.82C22, C2.22(D4oSD16), (C2xD4).399C23, (C2xQ8).370C23, M4(2):C4:21C2, C4.Q8.149C22, D4:C4.28C22, (C22xC8).345C22, Q8:C4.29C22, C23.24D4.8C2, C23.36D4.4C2, C22.542(C22xD4), C22.21(C22:Q8), C42.C2.11C22, C23.41C23:5C2, (C22xC4).1001C23, C42.6C22:11C2, (C2xM4(2)).71C22, C42:C2.121C22, C23.33C23.8C2, (C2xC4.Q8):30C2, C4.92(C2xC4oD4), (C2xC4).484(C2xD4), (C2xC4).106(C2xQ8), C2.63(C2xC22:Q8), (C2xC4).484(C4oD4), (C2xC4:C4).608C22, (C2xC4oD4).135C22, SmallGroup(128,1816)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C42.23C23
C1C2C4C2xC4C22xC4C2xC4oD4C23.33C23 — C42.23C23
C1C2C2xC4 — C42.23C23
C1C22C42:C2 — C42.23C23
C1C2C2C2xC4 — C42.23C23

Generators and relations for C42.23C23
 G = < a,b,c,d,e | a4=b4=d2=1, c2=a2b2, e2=a2, ab=ba, cac-1=a-1, ad=da, eae-1=ab2, cbc-1=dbd=b-1, be=eb, dcd=bc, ece-1=a2c, de=ed >

Subgroups: 332 in 188 conjugacy classes, 100 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, C23, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C4:C4, C2xC8, C2xC8, C2xC8, M4(2), C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C2xQ8, C4oD4, C4oD4, D4:C4, D4:C4, Q8:C4, Q8:C4, C4:C8, C4.Q8, C2.D8, C2xC4:C4, C2xC4:C4, C42:C2, C42:C2, C4xD4, C4xD4, C4xQ8, C22:Q8, C42.C2, C42.C2, C4:Q8, C4:Q8, C22xC8, C2xM4(2), C2xC4oD4, C23.24D4, C23.36D4, C42.6C22, C2xC4.Q8, M4(2):C4, Q8:Q8, D4:2Q8, D4.Q8, Q8.Q8, C23.33C23, C23.41C23, C42.23C23
Quotients: C1, C2, C22, D4, Q8, C23, C2xD4, C2xQ8, C4oD4, C24, C22:Q8, C22xD4, C22xQ8, C2xC4oD4, C2xC22:Q8, D4oSD16, C42.23C23

Smallest permutation representation of C42.23C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 42 46 17)(2 43 47 18)(3 44 48 19)(4 41 45 20)(5 62 33 39)(6 63 34 40)(7 64 35 37)(8 61 36 38)(9 15 23 49)(10 16 24 50)(11 13 21 51)(12 14 22 52)(25 56 60 31)(26 53 57 32)(27 54 58 29)(28 55 59 30)
(1 57 48 28)(2 60 45 27)(3 59 46 26)(4 58 47 25)(5 52 35 16)(6 51 36 15)(7 50 33 14)(8 49 34 13)(9 63 21 38)(10 62 22 37)(11 61 23 40)(12 64 24 39)(17 32 44 55)(18 31 41 54)(19 30 42 53)(20 29 43 56)
(5 62)(6 63)(7 64)(8 61)(13 51)(14 52)(15 49)(16 50)(17 42)(18 43)(19 44)(20 41)(25 31)(26 32)(27 29)(28 30)(33 39)(34 40)(35 37)(36 38)(53 57)(54 58)(55 59)(56 60)
(1 22 3 24)(2 9 4 11)(5 30 7 32)(6 56 8 54)(10 46 12 48)(13 43 15 41)(14 19 16 17)(18 49 20 51)(21 47 23 45)(25 38 27 40)(26 62 28 64)(29 34 31 36)(33 55 35 53)(37 57 39 59)(42 52 44 50)(58 63 60 61)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,42,46,17)(2,43,47,18)(3,44,48,19)(4,41,45,20)(5,62,33,39)(6,63,34,40)(7,64,35,37)(8,61,36,38)(9,15,23,49)(10,16,24,50)(11,13,21,51)(12,14,22,52)(25,56,60,31)(26,53,57,32)(27,54,58,29)(28,55,59,30), (1,57,48,28)(2,60,45,27)(3,59,46,26)(4,58,47,25)(5,52,35,16)(6,51,36,15)(7,50,33,14)(8,49,34,13)(9,63,21,38)(10,62,22,37)(11,61,23,40)(12,64,24,39)(17,32,44,55)(18,31,41,54)(19,30,42,53)(20,29,43,56), (5,62)(6,63)(7,64)(8,61)(13,51)(14,52)(15,49)(16,50)(17,42)(18,43)(19,44)(20,41)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,57)(54,58)(55,59)(56,60), (1,22,3,24)(2,9,4,11)(5,30,7,32)(6,56,8,54)(10,46,12,48)(13,43,15,41)(14,19,16,17)(18,49,20,51)(21,47,23,45)(25,38,27,40)(26,62,28,64)(29,34,31,36)(33,55,35,53)(37,57,39,59)(42,52,44,50)(58,63,60,61)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,42,46,17)(2,43,47,18)(3,44,48,19)(4,41,45,20)(5,62,33,39)(6,63,34,40)(7,64,35,37)(8,61,36,38)(9,15,23,49)(10,16,24,50)(11,13,21,51)(12,14,22,52)(25,56,60,31)(26,53,57,32)(27,54,58,29)(28,55,59,30), (1,57,48,28)(2,60,45,27)(3,59,46,26)(4,58,47,25)(5,52,35,16)(6,51,36,15)(7,50,33,14)(8,49,34,13)(9,63,21,38)(10,62,22,37)(11,61,23,40)(12,64,24,39)(17,32,44,55)(18,31,41,54)(19,30,42,53)(20,29,43,56), (5,62)(6,63)(7,64)(8,61)(13,51)(14,52)(15,49)(16,50)(17,42)(18,43)(19,44)(20,41)(25,31)(26,32)(27,29)(28,30)(33,39)(34,40)(35,37)(36,38)(53,57)(54,58)(55,59)(56,60), (1,22,3,24)(2,9,4,11)(5,30,7,32)(6,56,8,54)(10,46,12,48)(13,43,15,41)(14,19,16,17)(18,49,20,51)(21,47,23,45)(25,38,27,40)(26,62,28,64)(29,34,31,36)(33,55,35,53)(37,57,39,59)(42,52,44,50)(58,63,60,61) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,42,46,17),(2,43,47,18),(3,44,48,19),(4,41,45,20),(5,62,33,39),(6,63,34,40),(7,64,35,37),(8,61,36,38),(9,15,23,49),(10,16,24,50),(11,13,21,51),(12,14,22,52),(25,56,60,31),(26,53,57,32),(27,54,58,29),(28,55,59,30)], [(1,57,48,28),(2,60,45,27),(3,59,46,26),(4,58,47,25),(5,52,35,16),(6,51,36,15),(7,50,33,14),(8,49,34,13),(9,63,21,38),(10,62,22,37),(11,61,23,40),(12,64,24,39),(17,32,44,55),(18,31,41,54),(19,30,42,53),(20,29,43,56)], [(5,62),(6,63),(7,64),(8,61),(13,51),(14,52),(15,49),(16,50),(17,42),(18,43),(19,44),(20,41),(25,31),(26,32),(27,29),(28,30),(33,39),(34,40),(35,37),(36,38),(53,57),(54,58),(55,59),(56,60)], [(1,22,3,24),(2,9,4,11),(5,30,7,32),(6,56,8,54),(10,46,12,48),(13,43,15,41),(14,19,16,17),(18,49,20,51),(21,47,23,45),(25,38,27,40),(26,62,28,64),(29,34,31,36),(33,55,35,53),(37,57,39,59),(42,52,44,50),(58,63,60,61)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G4A4B4C4D4E···4N4O4P4Q4R8A8B8C8D8E8F
order1222222244444···44444888888
size1111224422224···48888444488

32 irreducible representations

dim11111111111122224
type++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D4D4Q8C4oD4D4oSD16
kernelC42.23C23C23.24D4C23.36D4C42.6C22C2xC4.Q8M4(2):C4Q8:Q8D4:2Q8D4.Q8Q8.Q8C23.33C23C23.41C23C22:C4C4:C4C4oD4C2xC4C2
# reps11111122221122444

Matrix representation of C42.23C23 in GL6(F17)

1300000
040000
0016000
0001600
0016010
0016001
,
100000
010000
0011500
0011600
0001601
00116160
,
0160000
100000
000700
0012000
00012125
00121255
,
1600000
0160000
001000
0011600
000010
0010016
,
400000
0130000
0016020
0000116
000010
0001610

G:=sub<GL(6,GF(17))| [13,0,0,0,0,0,0,4,0,0,0,0,0,0,16,0,16,16,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,15,16,16,16,0,0,0,0,0,16,0,0,0,0,1,0],[0,1,0,0,0,0,16,0,0,0,0,0,0,0,0,12,0,12,0,0,7,0,12,12,0,0,0,0,12,5,0,0,0,0,5,5],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,1,0,1,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,2,1,1,1,0,0,0,16,0,0] >;

C42.23C23 in GAP, Magma, Sage, TeX

C_4^2._{23}C_2^3
% in TeX

G:=Group("C4^2.23C2^3");
// GroupNames label

G:=SmallGroup(128,1816);
// by ID

G=gap.SmallGroup(128,1816);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,560,253,120,758,1018,248,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=1,c^2=a^2*b^2,e^2=a^2,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e^-1=a^2*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<